Classification of Soccer and Basketball Players’ Jumping Performance Characteristics: A Logistic Regression Approach

Author:

Chalitsios Christos,Nikodelis ThomasORCID,Panoutsakopoulos VassiliosORCID,Chassanidis Christos,Kollias Iraklis

Abstract

This study aimed to examine countermovement jump (CMJ) kinetic data using logistic regression, in order to distinguish sports-related mechanical profiles. Eighty-one professional basketball and soccer athletes participated, each performing three CMJs on a force platform. Inferential parametric and nonparametric statistics were performed to explore group differences. Binary logistic regression was used to model the response variable (soccer or not soccer). Statistical significance (p < 0.05) was reached for differences between groups in maximum braking rate of force development (RFDDmax, U79 = 1035), mean braking rate of force development (RFDDavg, U79 = 1038), propulsive impulse (IMPU, t79 = 2.375), minimum value of vertical displacement for center of mass (SBCMmin, t79 = 3.135), and time difference (% of impulse time; ΔΤ) between the peak value of maximum force value (FUmax) and SBCMmin (U79 = 1188). Logistic regression showed that RFDDavg, impulse during the downward phase (IMPD), IMPU, and ΔΤ were all significant predictors. The model showed that soccer group membership could be strongly related to IMPU, with the odds ratio being 6.48 times higher from the basketball group, whereas RFDDavg, IMPD, and ΔΤ were related to basketball group. The results imply that soccer players execute CMJ differently compared to basketball players, exhibiting increased countermovement depth and impulse generation during the propulsive phase.

Publisher

MDPI AG

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3