FILM: Filtering and Machine Learning for Malware Detection in Edge Computing

Author:

Kim Young Jae,Park Chan-Hyeok,Yoon MyungKeun

Abstract

Machine learning with static-analysis features extracted from malware files has been adopted to detect malware variants, which is desirable for resource-constrained edge computing and Internet-of-Things devices with sensors; however, this learned model suffers from a misclassification problem because some malicious files have almost the same static-analysis features as benign ones. In this paper, we present a new detection method for edge computing that can utilize existing machine learning models to classify a suspicious file into either benign, malicious, or unpredictable categories while existing models make only a binary decision of either benign or malicious. The new method can utilize any existing deep learning models developed for malware detection after appending a simple sigmoid function to the models. When interpreting the sigmoid value during the testing phase, the new method determines if the model is confident about its prediction; therefore, the new method can take only the prediction of high accuracy, which reduces incorrect predictions on ambiguous static-analysis features. Through experiments on real malware datasets, we confirm that the new scheme significantly enhances the accuracy, precision, and recall of existing deep learning models. For example, the accuracy is enhanced from 0.96 to 0.99, while some files are classified as unpredictable that can be entrusted to the cloud for further dynamic or human analysis.

Funder

Institute for Information and Communications Technology Promotion

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference20 articles.

1. A Close Look at a Daily Dataset of Malware Samples

2. VirusTotalhttps://www.virustotal.com/en/statistics/

3. Machine Learning Methods for Malware Detection and Classification. (Kaakkois-Suomen Ammattikorkeakoulu, 2017)https://www.semanticscholar.org/paper/Machine-Learning-Methods-for-Malware-Detection-and-Chumachenko/8a31abcde3ea14386b6e165b09e252825e51aa30

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3