A Combined Data-Driven and Model-Based Algorithm for Accurate Battery Thermal Runaway Warning

Author:

Chen Qingyang1,He Yinghui1,Fang Nengjie2,Yu Guanding1ORCID

Affiliation:

1. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

2. Hangzhou Zhonhen Electric Co., Ltd., Hangzhou 310053, China

Abstract

With the increasingly widespread application of large-scale energy storage battery systems, the demand for battery safety is rising. Research on how to detect battery anomalies early and reduce the occurrence of thermal runaway (TR) accidents has become particularly important. Existing research on battery TR warning algorithms can be mainly divided into two categories: model-driven and data-driven methods. However, the common model-driven methods are often of high complexity, with poor versatility and low early warning capability; and the common data-driven methods are mostly based on neural networks, requiring substantial training costs, with better early warning capabilities but higher false alarm probabilities. To address the limitations of existing works, this paper proposes a combined data-driven and model-based algorithm for accurate battery TR warnings. Specifically, the K-Means algorithm serves as the data-driven module, capturing outliers in battery data, and the Bernardi equation serves as the model-driven module used to evaluate battery temperature. Ultimately, the outputs of the weighted model-driven module and data-driven module are combined to comprehensively assess whether the battery is abnormal. The proposed algorithm combines the advantages of model-driven and data-driven approaches, achieving a 25 min advance warning for thermal runaway, with a significantly reduced probability of false alarms.

Funder

“Pioneer” and “Leading Goose” R&D Program of Zhejiang

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3