Abstract
It is difficult for visually impaired people to move indoors and outdoors. In 2018, world health organization (WHO) reported that there were about 253 million people around the world who were moderately visually impaired in distance vision. A navigation system that combines positioning and obstacle detection has been actively researched and developed. However, when these obstacle detection methods are used in high-traffic passages, since many pedestrians cause an occlusion problem that obstructs the shape and color of obstacles, these obstacle detection methods significantly decrease in accuracy. To solve this problem, we developed an application “Follow me!”. The application recommends a safe route by machine learning the gait and walking route of many pedestrians obtained from the monocular camera images of a smartphone. As a result of the experiment, pedestrians walking in the same direction as visually impaired people, oncoming pedestrians, and steps were identified with an average accuracy of 0.92 based on the gait and walking route of pedestrians acquired from monocular camera images. Furthermore, the results of the recommended safe route based on the identification results showed that the visually impaired people were guided to a safe route with 100% accuracy. In addition, visually impaired people avoided obstacles that had to be detoured during construction and signage by walking along the recommended route.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference29 articles.
1. Visual Impairment and Blindnesshttp://www.who.int/mediacentre/factsheets/fs282/en/
2. A review of assistive spatial orientation and navigation technologies for the visually impaired
3. Accurate positioning using long range active RFID technology to assist visually impaired people
4. Supporting for Visually Handicapped to Walk Around with RFID Technologies;Asano;Sens. Transducers,2015
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献