Detecting Emotions behind the Screen

Author:

Alkaabi NajlaORCID,Zaki NazarORCID,Ismail HebaORCID,Khan ManzoorORCID

Abstract

Students’ emotional health is a major contributor to educational success. Hence, to support students’ success in online learning platforms, we contribute with the development of an analysis of the emotional orientations and triggers in their text messages. Such analysis could be automated and used for early detection of the emotional status of students. In our approach, we relied on transfer learning to train the model, using the pre-trained Bidirectional Encoder Representations from Transformers model (BERT). The model classified messages as positive, negative, or neutral. The transfer learning model was then used to classify a larger unlabeled dataset and fine-grained emotions in the negative messages only, using NRC lexicon. In our analysis to the results, we focused in discovering the dominant negative emotions expressed and the most common words students used to express them. We believe this can be an important clue or first line of detection that may assist mental health practitioners to develop targeted programs for students, especially with the massive shift to online education due to the COVID-19 pandemic. We compared our model to a state-of-the-art ML-based model and found our model outperformed the other by achieving a 91% accuracy compared to an 86%. To the best of our knowledge, this is the first study to focus on a mental health analysis of students in online educational platforms other than massive open online courses (MOOCs).

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3