Analysis of Ultrasound Signal on Reflection from a Sharp Corner Surface: Study of Selected Characteristics Deriving from Regression by Transfer Function

Author:

Madola VladimírORCID,Cviklovič Vladimír,Paulovič Stanislav

Abstract

This article deals with the regression analysis of the ultrasonic signal amplitude when the character of the reflection surface has been changed from a planar case to a sharp corner case. The experiment was performed at a measurement distance within the interval from 100 mm to 215 mm. A nonlinear correlation between the amplitude of the ultrasound signal and the measured distance was demonstrated. By analyzing the frequency spectra, a poor nonlinear correlation between the maximum frequency component and the distance vector was found for the sharp corner case versus the planar case, which proved similar nonlinear characteristics as the signal amplitude marker. The strong linear correlation in the distance difference vectors in the amplitude analysis of the ultrasound signal confirmed the hypothesis of a direct relationship between the reflection surface geometric characteristic and the polarity of the difference. The ultrasound signal was identified as a 3rd-order dynamic system. The nonlinear correlation of the steady-state values of the modelled transfer functions versus distance likewise shows the characteristic of the polarity difference or character derivative as a quantification marker of the characteristics of the reflection surface from the geometric point of view.

Funder

Ministry of Education, Science, Research and Sport of the Slovak Republic

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3