Author:
Tan Wei,Wang He,Hou Huazhou,Liu Xiaoxu,Zheng Meng
Abstract
Networked nonlinear systems (NNSs) have great potential security threats because of malicious attacks. These attacks will destabilize the networked systems and disrupt the communication to the networked systems, which will affect the stability and performance of the networked control systems. Therefore, this paper aims to deal with the resilient control problem for NNSs with dynamically triggering mechanisms (DTMs) and malicious aperiodic denial-of-service (DoS) attacks. To mitigate the impact from DoS attacks and economize communication resources, a resilient dynamically triggering controller (RDTC) is designed with DTMs evolving an adaptive adjustment auxiliary variable. Thus, the resulting closed-loop system is exponentially stable by employing the piecewise Lyapunov function technique. In addition, according to the minimum inter-event time, the Zeno behavior can be excluded. Finally, the merits of the proposed controllers and theory are corroborated using the well-known nonlinear Chua circuit.
Funder
National Natural Science Foundation of China
International Partnership Program of Chinese Academy of Sciences
Jiangsu Provincial Key Laboratory of Networked Collective Intelligence
Guangdong Basic, Applied Basic Research Foundation
Natural Science Foundation of Jiangsu Province
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献