Abstract
The purpose of this paper is to study the effects of the use of boron nitride (BN) and other conventional nanoparticles (Al2O3, CuO and TiO2) on pressure drop and heat transfer in a microchannel. The governing equations for forced fluid flow and heat transfer were worked out by using fluent computational fluid dynamics (CFD) code. Computational results collected from fluent CFD code for Al2O3 as the nano-particle were compared with numerical values used in the literature for validation. The basis of a water-cooled (pure water, Al2O3/Water, CuO/Water, TiO2/Water and BN/Water) smooth microchannel was outlined, and then the corresponding laminar flow and heat transfer were evaluated numerically. The results from the numerical tests (NT) express good agreement with the values found in the literature. These results also indicate, through the comparison which was performed by taking the heat transfer and pressure loss parameters between BN and other widely used conventional nanoparticles (Al2O3, CuO and TiO2) into consideration, that BN is the more favorable nanoparticle. In comparison to other common nanoparticles (Al2O3, CuO and TiO2), BN enhances heat transfer and slightly raised pressure losses owing to its high thermal conductivity and high velocity profile because of low density. It is also chemically stable at the highest temperature relative to most solid materials. Thus, it has a structure that can be used in cooling systems for a long time without causing a problem of agglomeration.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering