Design and Optimization of Coal to Hydrogen System Coupled with Non-Nominal Operation of Thermal Power Unit

Author:

Zhang Li,Zhang YuORCID,Tang Jianping,Kang Lixia,Liu YongzhongORCID

Abstract

In an actual thermal power plant, deep peak shaving will cause thermal power units to run under non-nominal conditions for an extended period, resulting in serious problems such as increased equipment wearing, low equipment utilization efficiency and decreased benefits. To this end, in this work, both the design and optimization method for a coal to hydrogen system which is coupled with the expected non-nominal operation of thermal power units are proposed. Aiming towards maximum profit in the context of thermal power plants, a mathematical optimization model for a coal to hydrogen system based on the multi-period operating conditions of thermal power plants is established. The corresponding optimal design scheme of the coal to hydrogen system is determined using variable operating conditions. The superiority of the integrated system compared with an independent system is explored and the feasibility of the proposed method is verified by using the case study of an actual thermal power plant. The results show that compared with the independent system, the economic benefits of the integrated system can increase by 13.56%, where the sale of hydrogen in the coal to hydrogen system accounts for 60.3% of the total benefit. The main expenditure associated with the system is the purchase cost of feedstock coal, accounting for 91.8%. Since the required power and medium-pressure steam in the coal to hydrogen process are provided by thermal power units, the minimum operating load of the thermal power plant in the integrated system increases from 40% to 60.1%, which significantly improves the utilization efficiency and service life of the generator units. In addition, the proposed integration scheme of the system is simple and controllable, which can contribute to the maintenance of the safe and stable operation of power generation and hydrogen production processes. These results are expected to provide the necessary methodological guidance for the integration and optimization of coal-fired power plants and coal to hydrogen systems.

Funder

Key Research and Development Project of Shaanxi Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3