Molecular Dynamics Simulations of Thermal Transport of Carbon Nanotube Interfaces

Author:

Zhou Shijun1,Qing Shan1ORCID,Zhang Xiaohui1,Huang Haoming1,Hou Menglin1

Affiliation:

1. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

Abstract

In this paper, non-equilibrium molecular dynamics simulations are used to study the interfacial heat exchange capacity of one-dimensional carbon nanotube nested structures. When the radius of the CNT substrate is increased from 1.356 to 2.712 nm, the ITC has a great enhancement from 1.340 to 2.949 nw/k. After this, we investigate the effects of overlap length, CNT length, and van der Waals interaction strength on the thermal resistance of the interface between carbon nanotubes. Firstly, we found that the nesting depth can significantly increase the ITC, and the increase in ITC is more obvious at an overlap length of 40 Å than at 30 Å. After this, the effect of length on the interfacial thermal conductivity is investigated, and the interfacial thermal conductivity is enhanced by 33.8% when the length is increased to 30 nm. Finally, the effect of van der Waals interaction strength was investigated, and the ITC increased from 1.60 nW/K to 2.71 nW/K when the scale factor was increased from 1 to 2.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3