Experimental Investigation of Injection and Production Cycles for Limestone Reservoirs via Micro-CT: Implications for Underground Gas Storage

Author:

Wang Mengyu1,Wang Guanqun2,Hu Yong3,Zhou Yuan1,Li Wei4,Han Dan2,Zhao Zihan1,Wang Xia1,Li Longxin1,Long Wei24

Affiliation:

1. E&P Research Institute of Southwest Oil & Gas Field Company of CNPC, Chengdu 610041, China

2. ICORE GROUP Inc., Shenzhen 518057, China

3. Petro China Southwest Oil & Gasfield Company, Chengdu 610051, China

4. Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China

Abstract

Global demand for underground gas storage (UGS) is steadily increasing, with the limestone-based UGS system situated in the Sichuan Basin of China gathering considerable interest in recent years. However, studies focusing on the fundamental mechanisms of the injection-production process in these systems are limited. Moreover, existing studies utilizing physical experimental methods frequently fall short in effectively visualizing micro-flow or incorporating real core samples from the reservoir. To address these gaps, we performed a coreflood experiment, integrating micro-Computed Tomography (CT) scanning to investigate mechanisms of fluid flow and storage capacity during the injection and production cycles in limestone reservoirs. Our approach involved utilizing core plugs with artificially engraved fracture-vuggy structures, which mimic the characteristics of the reservoir. Micro-CT scans were performed to visualize the microscopic changes in fractured-vuggy structures and the distribution of irreducible water during each cycle. This study reveals that increased cycles correspondingly affect gas storage capacity, particularly by expanding it in relative larger vuggy structures while reducing it in finer fissure network structures. The amount of irreducible water decreases after injection-production cycles, likely being expelled alongside the extracted dry gas. This plays a critical role in expanding the storage capacity in larger vuggy systems. Conversely, there is a decrease in storage capacity within fissure network systems, as the irreducible water is replaced by gas. This leads to a reduction in the opening force of the fine conduit. The dense matrix has a very limited effect on the flow mechanism and its influence on storage capacity. Overall, these findings offer practical insights for optimizing injection and production strategies in limestone UGS systems within the Sichuan Basin, contributing to a deeper understanding and efficient utilization of this vital infrastructure.

Funder

Guangdong Introducing Innovative and Entrepreneurial Teams

Shenzhen Peacock Plan

Shenzhen Science and Technology Innovation Committee

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3