Abstract
Rainfall Intensity–Duration–Frequency (IDF) relationships are widely used in water infrastructure design and construction. IDF curves represent the relationship between rainfall intensity, duration, and frequency, and are obtained by analyzing observed data. These relationships are critical for the safe design of flood protection structures, storm sewers, culverts, bridges, etc. In this study, the IDF curves and empirical IDF formulas for the city of Erbil were developed for the first time by employing the annual maximum rainfall data for a period of 39 years (1980–2018), which is the only available recorded data. Statistical techniques such as Gumbel and Log-Pearson Type III (LPT III) were utilized to determine the IDF curves and empirical equations from daily rainfall data for several standard durations and return periods. The correlation between the rainfall intensities obtained from IDF curves and the empirical formula presented a reliable match, with a coefficient of determination of (R2 = 1). The results were compared to previously developed IDF curves and empirical formulas in Iraqi cities to show their reliability. Moreover, the results can be an initial step for authorities to establish required guidelines in the studied area, and in the design process of the storm water infrastructure of urban basins in the future.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献