Product Customer Satisfaction Measurement Based on Multiple Online Consumer Review Features

Author:

Liu Yiming,Wan Yinze,Shen Xiaolian,Ye Zhenyu,Wen JuanORCID

Abstract

With the development of the e-commerce industry, various brands of products with different qualities and functions continuously emerge, and the number of online shopping users is increasing every year. After purchase, users always leave product comments on the platform, which can be used to help consumers choose commodities and help the e-commerce companies better understand the popularity of their goods. At present, the e-commerce platform lacks an effective way to measure customer satisfaction based on various customer comments features. In this paper, our goal is to build a product customer satisfaction measurement by analyzing the relationship between the important attributes of reviews and star ratings. We first use an improved information gain algorithm to analyze the historical reviews and star rating data to find out the most informative words that the purchasers care about. Then, we make hypotheses about the relevant factors of the usefulness of reviews and verify them using linear regression. We finally establish a customer satisfaction measurement based on different review features. We conduct our experiments based on three products with different brands chosen from the Amazon online store. Based on our experiments, we discover that features such as length and extremeness of the comments will affect the review usefulness, and the consumer satisfaction measurement constructed using the exponential moving average method can effectively reflect the trend of user satisfaction over time. Our work can help companies acquire valuable suggestions to improve product features, increase sales, and help customers make wise purchases.

Publisher

MDPI AG

Subject

Information Systems

Reference39 articles.

1. Mining customer product reviews for product development: A summarization process

2. Discovering Computers 2010: Living in a Digital World, Complete;Shelly,2009

3. Fusing and mining opinions for reputation generation

4. Aggregating Customer Review Attributes for Online Reputation Generation

5. Study on Customer Satisfaction Evaluation of Five-star Hotels Based on Internet Reviews;Ding;Econ. Geogr.,2014

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3