Abstract
This paper evaluated the effectiveness of nitric acid pretreatment on the hydrolysis and subsequent fermentation of Jerusalem artichoke stalks (JAS). Jerusalem artichoke is considered a potential candidate for producing bioethanol due to its low soil and climate requirements, and high biomass yield. However, its stalks have a complexed lignocellulosic structure, so appropriate pretreatment is necessary prior to enzymatic hydrolysis, to enhance the amount of sugar that can be obtained. Nitric acid is a promising catalyst for the pretreatment of lignocellulosic biomass due to the high efficiency with which it removes hemicelluloses. Nitric acid was found to be the most effective catalyst of JAS biomass. A higher concentration of glucose and ethanol was achieved after hydrolysis and fermentation of 5% (w/v) HNO3-pretreated JAS, leading to 38.5 g/L of glucose after saccharification, which corresponds to 89% of theoretical enzymatic hydrolysis yield, and 9.5 g/L of ethanol. However, after fermentation there was still a significant amount of glucose in the medium. In comparison to more commonly used acids (H2SO4 and HCl) and alkalis (NaOH and KOH), glucose yield (% of theoretical yield) was approximately 47–74% higher with HNO3. The fermentation of 5% nitric-acid pretreated hydrolysates with the absence of solid residues, led to an increase in ethanol yield by almost 30%, reaching 77–82% of theoretical yield.
Funder
Narodowe Centrum Badań i Rozwoju
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献