Abstract
The main objective of the study is to assess the similarity between the time series of energy commodity prices and the time series of daily COVID-19 cases. The COVID-19 pandemic affects all aspects of the global economy. Although this impact is multifaceted, we assess the connections between the number of COVID-19 cases and the energy commodities sector. We analyse these connections by using the Dynamic Time Warping (DTW) method. On this basis, we calculate the similarity measure—the DTW distance between the time series—and use it to group the energy commodities according to their price change. Our analysis also includes finding the time shifts between daily COVID-19 cases and commodity prices in subperiods according to the chronology of the COVID-19 pandemic. Our findings are that commodities such as ULSD, heating oil, crude oil, and gasoline are weakly associated with COVID-19. On the other hand, natural gas, palm oil, CO2 allowances, and ethanol are strongly associated with the development of the pandemic.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献