Multi-Agent Simulation of Iceberg Mass Loss during Its Energy-Efficient Towing for Freshwater Supply

Author:

Filin Sergiy,Semenov Iouri,Filina-Dawidowicz LudmiłaORCID

Abstract

The problem of freshwater deficit in the last decade has progressed, not only in Africa or Asia, but also in European countries. One of the possible solutions is to obtain freshwater from drifting icebergs. The towing of large icebergs is the topic analyzed in various freshwater supply projects conducted in different zone-specific regions of the world. These projects show general effects of iceberg transport efficiency but do not present a detailed methodology for the calculation of their mass losses. The aim of this article is to develop the methodology to calculate the mass losses of icebergs transported on a selected route. A multi-agent simulation was used, and the numerical model to estimate the melting rate of the iceberg during its energy-efficient towing was developed. Moreover, the effect of towing speed on the iceberg’s mass loss was determined. It was stated that the maximum use of ocean currents, despite longer route and increased transport time, allows for energy-efficient transport of the iceberg. The optimal towing speed of the iceberg on the selected route was recommended at the range of 0.4–1 m/s. The achieved results may be of interest to institutions responsible for sustainable development and dealing with water resources and freshwater supply.

Funder

Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ion Migration Patterns and Mechanisms of Melting Brackish Water Ice by Gravity-Induced Desalination;2024

2. Towing icebergs to arid regions to reduce water scarcity;Scientific Reports;2023-01-07

3. Water Challenges in Rural Sub-Saharan Africa;Water Challenges in Rural and Urban Sub-Saharan Africa and their Management;2023

4. Water Conflicts in Sub-Saharan Africa;Frontiers in Environmental Science;2022-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3