Impact of the Initial Phase Composition of Alloys on the Effects Manifested by Yield Sites That Occur on Sheet Aluminum Alloys Subjected to Impact-Oscillatory Loading

Author:

Chausov Mykola,Pylypenko Andrii,Maruschak PavloORCID,Zasimchuk Vira,Brezinová Janette,Brezina Jakub,Viňáš JánORCID

Abstract

The impact of the initial phase composition of alloys was evaluated, in particular, the content of Cu, Mn, and Mg in aluminum alloys D16ChATW, 2024-T351 and aluminum alloy T, which in its physical and mechanical characteristics is close to alloy 6013. The impact was evaluated on the effects manifested by yield sites that occur on aluminum alloys that were subject to the dynamic non-equilibrium processes (DNPs) at the expense of impact-oscillatory loading of different intensities under conditions of static tensioning, The one-time DNP, to which the investigated aluminum alloys were subjected at the pre-set levels of elastic strain followed by static tensioning, was found to cause yield sites formation. This is due to self-organization of the alloy structure, which contributes to alloy plasticization. The initial phase alloys composition impact on the yield sites, which occurs when impulse energy of a different intensity is applied to the alloys, was analyzed. The specimens from the aluminum alloys undergoing DNPs of the same level were compared. This made it possible to conclude that alloys D16ChATW and 2024-T351, which have a higher content of Cu, Mn, and Mg, have longer yield sites upon subsequent static tensioning. On the basis of the experimental results, in particular, physical studies, the authors derived a physical and mathematical model of the yield sites that appear after DNPs.

Funder

Scientific Grant Agency

Cultural and Educational Grant Agency

Slovak Research and Development Agency

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanical Alloying of Aluminium Alloys;Advances in Chemical and Materials Engineering;2024-02-27

2. Current and future applications of mechanically alloyed materials;Mechanical Alloying of Ferrous and Non-Ferrous Alloys;2024

3. The Influence of Impac-Oscilation Loading on the Hardness of Surface Layers of D16ChATW Aluminum Alloy;Materials Science;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3