Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil

Author:

Baiamonte GiorgioORCID,Minacapilli MarioORCID,Crescimanno Giuseppina

Abstract

This paper aimed at investigating if the application of biochar (BC) to desert sand (DS) from the United Arab Emirates (UAE), characterized by a very poor soil-water retention (SWR) and by a very low value of the maximum water available for crops (AWmax), could positively affect soil water balance, by reducing the irrigation needs (VIRR) and improving the irrigation water use efficiency (IWUE) and the water use efficiency (WUE). The analysis was performed for three crops, i.e., wheat (Triticum aestivum), sorghum (Sorghum vulgare) and tomato (Lycopersicon esculentum). BC was applied to the DS at different fractions, fBC (fBC = 0, 0.091, 0.23 and 0.33). Drip irrigation was adopted as a highly efficient water saving method, which is particularly relevant in arid, water-scarce countries. Soil water balance and irrigation scheduling were simulated by application of the AQUACROP model, using as input the SWR measured without and with BC addition. The effect of BC was investigated under either a no-water stress (NWS) condition for the crops or deficit irrigation (DI). The results showed that the application of BC made it possible to reduce the predicted VIRR and to increase the IWUE under the NWS scenario, especially for wheat and sorghum, with less evident benefits for tomato. When a deficit irrigation (DI) was considered, even at the lowest considered fBC (0.091), BC counterbalanced the lower VIRR provided under DI, thus mitigating the yield reduction due to water stress, and improved the WUE. The influence of BC was more pronounced in wheat and tomato than in sorghum. The results evidenced that the application of BC could be a potential strategy for saving irrigation water and/or reducing the effects of drought stress in desert sand. This means that biochar could be used a management option to promote local production and reduce the dependency on food import, not only in the UAE, but also in other countries with extremely arid climatic conditions and large extensions of sandy soils similar to the considered DS.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference77 articles.

1. The State of the World’s Land and Water Resources: Managing Systems at Risk,2011

2. UNESCO World Water Assessment Programme. The United Nations World Water Development Report 2020: Water and Climate Change https://unesdoc.unesco.org/ark:/48223/pf0000372985.locale=en

3. 2009 Charting Our Water Future. Economic Frameworks to Inform Decision-Making. The 2030 Water Resources Group https://www.2030wrg.org/wp-content/uploads/2012/06/Charting_Our_Water_Future_Final.pdf

4. The State of Food Insecurity in the World, 2008,2008

5. Estimation at Plot, Farm and Basin Scale. International Water Management Institute (IWMI);Cook,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3