Prediction of Damage to the Vehicle Underbody due to Stone Chipping

Author:

Chu Yong-Ju,Eun Hyo-Jun,Lee Seung-Yop

Abstract

In these days, there is a paradigm shift from internal-combustion-engine vehicles to electric vehicles. Most electric vehicles developed include batteries mounted at the bottom, near the rear wheels. Hence, the robust design of underbody parts against the impact of external bodies or random stone chipping needs to be made. In this study, the mathematical modeling and statistical probability analysis of stone chipping and tire slip are performed for identifying and confirming the critical zones of the vehicle underbody that may be damaged by stone chipping. Thereby, stone chipping can be predicted by simulations using the employed mathematical model, before conducting experimental verification using the existing methods. Furthermore, the development cost and time can be reduced because the elements of the designed underbody can be analyzed for robustness, and the safety factor can be established during the design stage.

Funder

Korea Institute for Advancement of Technology

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3