Different Soil Particle-Size Classification Systems for Calculating Volume Fractal Dimension—A Case Study of Pinus sylvestris var. Mongolica in Mu Us Sandy Land, China

Author:

Deng Jifeng,Ma Chengzhong,Yu HongzhouORCID

Abstract

Characterizing changes in the soil particle-size distributions (PSD) are a major issue in environmental research because it has a great impact on soil properties, soil management, and desertification. To date, the use of soil volume fractal dimension (D) is a feasible approach to describe PSD, and its calculation is mainly dependent on subdivisions of clay, silt, sand fractions as well as different soil particle-size classification (PSC) systems. But few studies have developed appropriate research works on how PSC systems affect the calculations of D. Therefore, in this study, topsoil (0–5 cm) across nine forest density gradients of Pinus sylvestris var. mongolica plantations (MPPs) ranging from 900–2700 trees ha–1 were selected in the Mu Us sandy land, China. The D of soil was calculated by measuring soil PSD through fractal model and laser diffraction technique. The experimental results showed that: (1) The predominant PSD was distributed within the sand classification followed by clay and silt particle contents, which were far less prevalent in the study area. The general order of D values (Ds) was USDA (1993) > ISO14688 (2002) > ISSS (1929) > Katschinski (1957) > China (1987) > Blott & Pye (2012) PSC systems. (2) Ds were significantly positively related to the contents of clay and silt, and Ds were significantly negatively to the sand content. Ds were susceptible to the MPPs establishment and forest densities. (3) Ds of six PSC systems were significantly positive correlated, which indicated that they not only have difference, but also have close connection. (4) According to the fractal model and descriptions of soil fractions under different PSC systems, refining scales of clay and sand fractions could increase Ds, while the refining scale of silt fraction could decrease Ds. From the conclusions above, it is highly recommended that USDA (1993) and Blott & Pye (2012) PSC systems be used as reliable and practical PSC systems for describing and calculating D of soil PSD.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3