Abstract
Nanoscale metallic multilayer films (NMMFs) have captured scientific interests on their mechanical responses. Compared with the properties of monolithic films, multilayers possess unique high strength as the individual layer thickness reduces to the nanoscale, which is benefited from the plentiful hetero-interfaces. However, NMMFs always exhibit a low fracture toughness and ductility, which seriously hinders their practical applications. While there have been reviews on the strengthening and deformation mechanisms of microlaminate, rapid developments in nanotechnology have brought an urgent requirement for an overview focused on the cracking and toughening mechanisms in nanoscale metallic multilayers. This article provides an extensive review on the structure, standard methodology and fracture mechanisms of NMMFs. A number of issues about the crack-related properties of NMMFs have been displayed, such as fracture toughness, wear resistance, adhesion energy, and plastic instability. Taken together, it is hoped that this review will achieve the following two purposes: (1) introducing the size-dependent cracking and toughness performance in NMMFs; and (2) offer a better understanding of the role interfaces displayed in toughening mechanisms. Finally, we list a few questions we concerned, which may shed light on further development.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献