Fault Diagnosis of Rolling Bearings Based on Improved Fast Spectral Correlation and Optimized Random Forest

Author:

Tang Guiji,Pang BinORCID,Tian Tian,Zhou Chong

Abstract

Fault diagnosis of rolling bearings is important for ensuring the safe operation of industrial machinery. How to effectively extract the fault features and select a classifier with high precision is the key to realizing the fault recognition of bearings. Accordingly, a new fault diagnosis method of rolling bearings based on improved fast spectral correlation and optimized random forest (i.e., particle swarm optimization-random forest (PSO-RF)) is proposed in this paper. The main contributions of this study are made from two aspects. One is that an improved fast spectral correlation approach was developed to extract the fault features of bearings and form the feature vector more effectively. The other is that an optimized random forest classifier was developed to achieve highly accurate identification by exploiting particle swarm optimization to select the best parameters of random forest (RF). In the presented method, improved fast spectral correlation was first utilized to analyze the raw vibration signal caused by a faulty bearing to obtain the enhanced envelope spectrum. Then, the amplitudes of the four characteristic cyclic frequencies (i.e., the rotating frequency, the characteristic frequency of outer-race fault, the characteristic frequency of inner-race fault, and the characteristic frequency of rolling element fault) exhibited in the enhanced envelope spectrum were selected to form the feature vector. Finally, the PSO-RF method was introduced for identifying and classifying bearing faults. The experimental investigations demonstrate the proposed method can accurately identify bearing faults and outperform other state-of-art techniques considered.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3