Fatigue Performance and Model of Polyacrylonitrile Fiber Reinforced Asphalt Mixture

Author:

Wang Hui,Yang Zhen,Zhan Shihao,Ding Lei,Jin Ke

Abstract

Fatigue is considered a major pavement structural distress and an important part of a performance-based mix design. Currently, the fatigue model of asphalt mixture, especially the mixture incorporated with fibers, is not perfect. In this paper, the central-point bending fatigue test was conducted by constant strain mode with MTS apparatus. The fatigue performance and model of polyacrylonitrile (PAN) fiber-reinforced asphalt mixture produced with different fiber contents and asphalt contents were reported. The results indicated that the fatigue life of fiber reinforced mixture was higher than the reference one. The effects of fiber contents and asphalt contents on fatigue life were discussed. The mechanism of an optimum fiber content for the fatigue life in the fiber reinforced asphalt mixture was explained. The statistical analysis of variance (ANOVA) method and regression method were used to evaluate the effects of fiber content, strain level, and volumetric parameters, etc. on the fatigue life of an asphalt mixture. This paper presents a new fatigue performance model of a PAN fiber-reinforced asphalt mixture, including the fiber content, tensile strain, mixture initial flexural stiffness, and voids filled with asphalt (VFA). Compared to the earlier fatigue equations, the accuracy of the new fatigue model with the fiber content is improved significantly according to the statistical analysis results. Meanwhile, the model can preferably reveal the effect of fiber content, strain level, initial stiffness, and VFA on fatigue life.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3