Experimental and Numerical Analysis of Large-Scale Circular Concrete-Filled Steel Tubular Columns with Various Constructural Measures under High Axial Load Ratios

Author:

Zhao LidongORCID,Cao Wanlin,Guo Huazhen,Zhao Yang,Song Yu,Yang Zhaoyuan

Abstract

To investigate the effect of constructional measures (including horizontal and vertical stiffeners, rebar cages, embedded steel tubes, and cavity welded steel plates) under high axial load ratios on the seismic performance of concrete-filled steel tubular (CFST) columns, quasi-static tests for six large-scale CFST columns with various constructional measures are performed. All specimens are subjected to identical axial forces. The failure mode, hysteresis characteristics, bearing capacity, stiffness degradation, ductility, and energy dissipation of specimens are analyzed. The study shows that the horizontal stiffener delays the occurrence and severity of column base buckling, the vertical stiffener improves the bending resistance capacity and initial stiffness of the member, the rebar cage improves the ductility, and the embedded circular steel tube significantly improves the member’s bearing capacity, ductility, and energy dissipation. When an internal circular steel tube and cavity welded steel plate are applied in tandem, the section steel ratio increases by 4.42% and the bearing capacity improves by 42.72%. A finite element model is created to verify test results, and simulation results match the test results well.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference26 articles.

1. Current situation and discussion of structural design for super high-rise buildings above 250 m in China;Ding;J. Build. Struc.,2014

2. Composite concrete filled steel tube columns;Webb,1990

3. Resistance of circular concrete-filled tubular sections to combined axial compression and bending;Young;Thin-Walled Struct.,2017

4. Seismic design of concrete-filled circular steel bridge piers;Michel;J. Bridge Eng.,2004

5. Strength of circular concrete-filled tubes with and without internal reinforcement under combined loading;Jiho;J. Struct. Eng.,2013

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3