The Independent Impacts of PM2.5 Dropping on the Physical and Chemical Properties of Atmosphere over North China Plain in Summer during 2015–2019

Author:

Ou Shengju,Wei Wei,Cai Bin,Chen Saisai,Guan Panbo,Cheng Shuiyuan

Abstract

Great changes occurred in the physical and chemical properties of the atmosphere in the North China Plain (NCP) in summer caused by PM2.5 dropping from 58 μg/m3 in 2015 to 36.0 μg/m3 in 2019. In this study, we first applied the WRF-Chem model to quantify the impact of PM2.5 reduction on shortwave radiation reaching the ground (SWDOWN), planetary boundary layer height (PBLH), and the surface concentration of air pollutants (represented by CO). Simulation results obtained an increase of 15.0% in daytime SWDOWN and 9.9% in daytime PBLH, and a decrease of −5.0% in daytime CO concentration. These changes were induced by the varied PM2.5 levels. Moreover, the variation in SWDOWN further led to a rise in the NO2 photolysis rate (JNO2) over this region, by 1.82 × 10−4~1.91 × 10−4 s−1 per year. Afterwards, we employed MCM chemical box model to explore how the JNO2 increase and the precursor decrease (CO, VOCs, and NOx) influenced O3 and HOx radicals. The results revealed that the photolysis rate (J) increase would individually cause a change on daytime surface O3, OH, and HO2 radicals by +9.0%, +18.9%, and +23.7%; the corresponding change induced by the precursor decrease was −2.5%, +1.9%, and −2.3%. At the same time, the integrated impacts of the change in J and precursors cause an increase of +6.3%, +21.1%, and +20.9% for daytime surface O3, OH, and HO2. Generally, the atmospheric oxidation capacity significantly enhanced during summer in NCP due to the PM2.5 dropping in recent years. This research can help understand atmosphere changes caused by PM2.5 reduction comprehensively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3