The Development and Concurrent Validity of a Multi-Sensor-Based Frailty Toolkit for In-Home Frailty Assessment

Author:

Bian ChaoORCID,Ye Bing,Mihailidis Alex

Abstract

Early identification of frailty is crucial to prevent or reverse its progression but faces challenges due to frailty’s insidious onset. Monitoring behavioral changes in real life may offer opportunities for the early identification of frailty before clinical visits. This study presented a sensor-based system that used heterogeneous sensors and cloud technologies to monitor behavioral and physical signs of frailty from home settings. We aimed to validate the concurrent validity of the sensor measurements. The sensor system consisted of multiple types of ambient sensors, a smart speaker, and a smart weight scale. The selection of these sensors was based on behavioral and physical signs associated with frailty. Older adults’ perspectives were also included in the system design. The sensor system prototype was tested in a simulated home lab environment with nine young, healthy participants. Cohen’s Kappa and Bland–Altman Plot were used to evaluate the agreements between the sensor and ground truth measurements. Excellent concurrent validity was achieved for all sensors except for the smart weight scale. The bivariate correlation between the smart and traditional weight scales showed a strong, positive correlation between the two measurements (r = 0.942, n = 24, p < 0.001). Overall, this work showed that the Frailty Toolkit (FT) is reliable for monitoring physical and behavioral signs of frailty in home settings.

Funder

AGE-WELL NCE Inc. (Aging Gracefully across Environments using Technology to Support Wellness, Engagement and Long Life NCE Inc.) - Networks of Centres of Excellence of Canada

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3