Preparation of Hybrid Polyaniline/Nanoparticle Membranes for Water Treatment Using an Inverse Emulsion Polymerization Technique under Sonication

Author:

Chajanovsky ItamarORCID,Suckeveriene Ran Y.ORCID

Abstract

This manuscript describes a novel in situ interfacial dynamic inverse emulsion polymerization process under sonication of aniline in the presence of carbon nanotubes (CNT) and graphene nanoparticles in ethanol. This polymerization method is simple and very rapid (up to 10 min) compared to other techniques reported in the literature. During polymerization, the nanoparticles are coated with polyaniline (PANI), forming a core-shell structure, as confirmed by high-resolution scanning electron microscopy (HRSEM) and Fourier-Transform Infrared (FTIR) measurements. The membrane pore sizes range between 100–200 nm, with an average value of ~119 ± 28.3 nm. The film resistivity decreased when treated with alcohol, and this behavior was used for selection of the most efficient alcohol as a solvent for this polymerization technique. The membrane permeability of the PANI grafted CNT was lower than the CNT reference, thus demonstrating better membranal properties. As measured by water permeability, these are ultrafiltration membranes. An antimicrobial activity test showed that whereas the reference nanoparticle Bucky paper developed a large bacterial colony, the PANI grafted CNT sample had no bacterial activity. The thicker, 2.56 mm membranes exhibited high salt removal properties at a low pressure drop. Such active membranes comprise a novel approach for future water treatment applications.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference46 articles.

1. Filters and Filtration Handbook;Sparks,2015

2. Biofouling of Water Treatment Membranes: A Review of the Underlying Causes, Monitoring Techniques and Control Measures

3. Use of Ultrasonic Sensors for Characterization of Membrane Fouling and Cleaning

4. Role of Bacterial Adhesion in Biofilm Formation and Biocorrosion;Marshall,1991

5. Microbial Fouling and Corrosion: Fundamentals and Mechanisms;Rao,2012

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3