Analysis of Lane-Changing Decision-Making Behavior of Autonomous Vehicles Based on Molecular Dynamics

Author:

Qu Dayi,Zhang Kekun,Song Hui,Wang TaoORCID,Dai Shouchen

Abstract

Along with the rapid development of autonomous driving technology, autonomous vehicles are showing a trend of practicality and popularity. Autonomous vehicles perceive environmental information through sensors to provide a basis for the decision making of vehicles. Based on this, this paper investigates the lane-changing decision-making behavior of autonomous vehicles. First, the similarity between autonomous vehicles and moving molecules is sought based on a system-similarity analysis. The microscopic lane-changing behavior of vehicles is analyzed by the molecular-dynamics theory. Based on the objective quantification of the lane-changing intention, the interaction potential is further introduced to establish the molecular-dynamics lane-changing model. Second, the relationship between the lane-changing initial time and lane-changing completed time, and the dynamic influencing factors of the lane changing, were systematically analyzed to explore the influence of the microscopic lane-changing behavior on the macroscopic traffic flow. Finally, the SL2015 lane-changing model was compared with the molecular-dynamics lane-changing model using the SUMO platform. SUMO is an open-source and multimodal traffic experimental platform that can realize and evaluate traffic research. The results show that the speed fluctuation of autonomous vehicles under the molecular-dynamics lane-changing model was reduced by 15.45%, and the number of passed vehicles was increased by 5.93%, on average, which means that it has better safety, stability, and efficiency. The molecular-dynamics lane-changing model of autonomous vehicles takes into account the dynamic factors in the traffic scene, and it reasonably shows the characteristics of the lane-changing behavior for autonomous vehicles.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Key Research and Development Program of Shandong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3