Optimum Volume Fraction and Inlet Temperature of an Ideal Nanoparticle for Enhanced Oil Recovery by Nanofluid Flooding in a Porous Medium

Author:

Al-Yaari Abdullah1ORCID,Ching Dennis Ling Chuan1,Sakidin Hamzah1,Muthuvalu Mohana Sundaram1,Zafar Mudasar1ORCID,Alyousifi Yousif2,Saeed Anwar Ameen Hezam3ORCID,Haruna Abdurrashid14ORCID

Affiliation:

1. Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia

2. Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia

3. Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia

4. Department of Chemistry, Ahmadu Bello University, Zaria 810107, Nigeria

Abstract

Nowadays, oil companies employ nanofluid flooding to increase oil production from oil reservoirs. Herein the present work, a multiphase flow in porous media was used to simulate oil extraction from a three-dimensional porous medium filled with oil. Interestingly, the finite element method was used to solve the nonlinear partial differential equations of continuity, energy, Darcy’s law, and the transport of nanoparticles (NPs). The proposed model used nanofluids (NFs) empirical formulas for density and viscosity on NF and oil relative permeabilities and NP transport equations. The NPs thermophysical properties have been investigated and compared with their oil recovery factor (ORF) to determine the highest ORF. Different NPs (SiO2, CuO, and Al2O3) were used as the first parameter, keeping all parameters constant. The simulation was run three times for the injected fluid using the various NPs to compare the effects on enhanced oil recovery. The second parameter, volume fraction (VF), has been modeled six times (0.5, 1, 2, 3, 4, and 5%), with all other parameters held constant. The third parameter, the injected NF inlet temperature (293.15–403.15 K), was simulated assuming that all other parameters are kept constant. The energy equation was applied to choose the inlet temperature that fits the optimum NP and VF to determine the highest ORF. Findings indicated that SiO2 shows the best ORF compared to the other NPs. Remarkably, SiO2 has the lowest density and highest thermal capacity. The optimum VF of SiO2 was 4%, increasing the ORF but reduced when the VF was higher than 4%. The ORF was improved when the viscosity and density of the oil decreased by increasing the injected inlet temperature. Furthermore, the results indicated that the highest ORF of 37% was obtained at 353.15 K when SiO2 was used at a VF of 4%. At the same time, the lowest recovery is obtained when a volume of 5% was used at 403.15 K.

Funder

Department of Fundamental and Applied Science at Universiti Teknologi PETRONAS

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3