The Effect of Tubificid Bioturbation on Vertical Water Exchange across the Sediment–Water Interface

Author:

Mao RuichenORCID,Wu Jintao,Qin Xin,Ma Chi,Song JinxiORCID,Cheng Dandong,Sun Haotian,Li Mingyue

Abstract

The bioturbation activity of macroinvertebrates can affect the level of water exchange across the sediment–water interface. The impact of tubificid worm with different densities on the vertical water exchange at the sediment–water interface was investigated based on laboratory flume experiments. Vertical water fluxes, as well as physiochemical parameters, were measured at seven-day intervals, and the maximum penetration depths were obtained by dye injection before and after the tubificid bioturbation experiment, respectively. The bioturbation effects can be summarized in two aspects: (1) when the density was less than (or equal to) 20 individual/10 cm2, the volume of vertical water exchange positively correlated with the tubificid bioturbation. Once the density exceeded (or equaled) 25 individual/10 cm2, the vertical water flux decreased with increasing tubificid bioturbation. After 14 to 21 days, a negative correlation was identified between the bioturbation and the vertical water flux under all biological densities. (2) The maximum depth that the surface water can penetrate the sediment increased with increasing tubificid density. These results revealed that the vertical water was closely related to the biological density. The study has certain reference significance to understanding the spatiotemporal heterogeneity of hyporheic water exchange on a local scale.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3