Abstract
Loess landslides are closely related to the variation in mechanical properties of soils due to the leaching of irrigation water in the irrigation area which causes the loss of soluble salt in the loess stratum. To investigate the effect of leaching on the mechanical characteristics of loess, ring shear tests were conducted on the slip zone soil samples obtained from a typical loess landslide under different soaking time and salt concentration. Furthermore, the microstructural observations were made on shear planes by using SEM (scanning electron microscopy) tests. The experiment revealed that: firstly, the shear strength of loess decreases with the increase of soaking time before reaching the minimum value at the soaking time of 1 d, and then increases with the soaking time until reaching a relatively stable value. Secondly, the shear strength of loess has an increasing tendency with the salt concentration before reaching a maximum value at the salt concentration of 8%, and then shear strength decreases. In addition, a “stress-softening” was found for the loess samples with the soaking time of 1 d and salt concentration of 8%. It is found that the total number of micropores and small-pores in loess samples decreases with increasing salt concentration up to 8%, but increases rapidly between salt contents of 8% and 20%. The SEM tests showed that the increase in salt concentration (0% to 8%) facilities the formation of small aggregates within loess soils, which in turn promotes the increasing of shear strength. However, further increase in salt concentration (8% to 20%) helps the development of relatively large aggregates in loess samples, resulting in the reduction in shear strength.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献