Abstract
Bad data as a result of measurement errors in secondary substation (SS) monitoring equipment is difficult to detect and negatively affects power system state estimation performance by both increasing the computational burden and jeopardizing the state estimation accuracy. In this paper a short-term load forecasting (STLF) hybrid strategy based on singular spectrum analysis (SSA) in combination with artificial neural networks (ANN), is presented. This STLF approach is aimed at detecting, identifying and eliminating and/or correcting such bad data before it is provided to the state estimator. This approach is developed to improve the accuracy of the load forecasts and it is tested against real power load data provided by electricity suppliers. Depending on the week considered, mean absolute percentage error (MAPE) values which range from 1.6% to 3.4% are achieved for STLF. Different systematic errors, such as gain and offset error levels and outliers, are successfully detected with a hit rate of 98%, and the corresponding measurements are corrected before they are sent to the control center for state estimation purposes.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献