Evaluation of Three Peptide Immobilization Techniques on a QCM Surface Related to Acetaldehyde Responses in the Gas Phase

Author:

Wasilewski TomaszORCID,Szulczyński Bartosz,Kamysz Wojciech,Gębicki Jacek,Namieśnik Jacek

Abstract

The quartz-crystal microbalance is a sensitive and universal tool for measuring concentrations of various gases in the air. Biochemical functionalization of the QCM electrode allows a label-free detection of specific molecular interactions with high sensitivity and specificity. In addition, it enables a real-time determination of its kinetic rates and affinity constants. This makes QCM a versatile bioanalytical screening tool for various applications, with surface modifications ranging from the detection of single molecular monolayers to whole cells. Various types of biomaterials, including peptides mapping the binding sites of olfactory receptors, can be deposited as a sensitive element on the surface of the electrodes. One of key ways to ensure the sensitivity and accuracy of the sensor is provided by application of an optimal and repeatable method of immobilization. Therefore, effective sensors operation requires development of an optimal method of deposition. This paper reviews popular techniques (drop-casting, spin-coating, dip-coating) for coating peptides on piezoelectric crystals surface. Peptide (LEKKKKDC-NH2) derived from an aldehyde binding site in the HarmOBP7 protein was synthesized and used as a sensing material for the biosensor. The degree of deposition of the sensitive layer was monitoring by variations in the sensors frequency. The highest mass threshold for QCM measurements for peptides was approximately 16.43 µg·mm−2 for spin coating method. Developed sensor exhibited repeatable response to acetaldehyde. Moreover, responses to toluene was observed to evaluate sensors specificity. Calibration curves of the three sensors showed good determination coefficients (R2 > 0.99) for drop casting and dip coating and 0.97 for the spin-coating method. Sensors sensitivity vs. acetaldehyde were significantly higher for the dip-coating and drop-casting methods and lower for spin-coating one.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3