Microfluidic System for Cell Mixing and Particle Focusing Using Dean Flow Fractionation

Author:

Wiede Alexander12,Stranik Ondrej1,Tannert Astrid12,Neugebauer Ute123ORCID

Affiliation:

1. Leibniz Institute of Photonic Technology (Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research, LPI), 07745 Jena, Germany

2. Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany

3. Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany

Abstract

Recent developments in the field of additive manufacturing processes have led to tremendous technological progress and opened directions for the field of microfluidics. For instance, new flexible materials for 3D printing allow the substitution of polydimethylsiloxane (PDMS) in microfluidic prototype development. Three-dimensional-printed microfluidic components open new horizons, in particular for the automated handling of biological cells (e.g., eukaryotic cells or bacteria). Here, we demonstrate how passive mixing and passive separation processes of biological cells can be realized using 3D printing concepts for rapid prototyping. This technique facilitates low-cost experimental setups that are easy to modify and adopt for specific detection and diagnostic purposes. In particular, printing technologies based on fused deposition modeling and stereolithography are used and their realization is discussed. Additive technologies enable the fabrication of multiplication mixers, which overcome shortcomings of current pillar or curve-based techniques and enable efficient mixing, also of biological cells without affecting viability. Using standard microfluidic components and state-of-the art 3D printing technologies, we realize a separation system based on Dean flow fragmentation without the use of PDMS. In particular, we describe the use of a 3D-printed helix for winding a capillary for particle flow and a new chip design for particle separation at the outlet. We demonstrate the functionality of the system by successful isolation of ~12 µm-sized particles from a particle mixture containing large (~12 µm, typical size of eukaryotic cells) and small (~2 µm, typical size of bacteria or small yeasts) particles. Using this setup to separate eukaryotic cells from bacteria, we could prove that cell viability is not affected by passage through the microfluidic systems.

Funder

Leibniz Institute of Photonic Technology

German Federal Ministry of Education and Research

the funding program Photonics Research Germany

the Leibniz Association via the Leibniz ScienceCampus InfectoOptics

the Deutsche Forschungsgemeinschaft

the European Union

Publisher

MDPI AG

Subject

General Medicine

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3