Modeling the Effects of NO3−, H+ and Potential HNE on Nitro TAP through Response Surface Methodology

Author:

Portillo Carlos1ORCID,Gallegos Sandra2,Salazar Iván3,Jamett Ingrid4,Castillo Jonathan5ORCID,Cerecedo-Sáenz Eduardo6ORCID,Salinas-Rodríguez Eleazar6ORCID,Saldaña Manuel27ORCID

Affiliation:

1. Centro de Desarrollo Energético Antofagasta, Universidad de Antofagasta, Antofagasta 1271155, Chile

2. Faculty of Engineering and Architecture, Universidad Arturo Prat, Iquique 1110939, Chile

3. Departamento de Ingeniería Civil, Universidad Católica del Norte, Antofagasta 1270709, Chile

4. Centro de Economía Circular en Procesos Industriales (CECPI), Facultad de Ingeniería, Universidad de Antofagasta, Antofagasta 1270300, Chile

5. Departamento de Ingeniería en Metalurgia, Universidad de Atacama, Copiapo 1531772, Chile

6. Academic Area of Earth Sciences and Materials, Institute of Basic Sciences and Engineering, Autonomous University of the State of Hidalgo, Pachuca 42184, Mexico

7. Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Antofagasta 1270300, Chile

Abstract

Nitration is a chemical process that introduces a nitro group into a molecule, which modifies properties of organic compounds, impacting their reactivity and physical attributes. In copper mining, elevated nitrate levels present operational difficulties, impacting recovery percentages and leading to the deterioration of organic extractants. Historically, various elements such as intense electrolyte acidity, sunlight exposure, Mn presence, high temperatures, and microbial activity have been linked to this degradation. Over time, numerous methods, including the introduction of additives and the implementation of recirculation approaches, have been developed to address the nitration issue. Mathematical modeling of nitration (like response surface methodology, RSM) based on explanatory variables, such as NO3−, H+, and Potential HNE, has the potential to obtain a better understanding of nitration processes. This study highlights the effectiveness of the TAP Test in assessing the aggressiveness level of nitrates in aqueous solutions and, given the increase in complexity of the minerals in mining sites, it is plausible to anticipate a rise in usage of these tests within hydrometallurgical plants in near future. Using RSM and design of experiments proved robust in examining the nitration phenomenon. Maximum TAP nitration occurred at elevated levels of NO3−, H+, and Potential HNE, with an experimental peak of 17.9%; this contrasts with the theoretical 16.25% from the fitted model (R2≅90%).

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3