The Review of the Application of the Heat Pipe on Enhancing Performance of the Air-Conditioning System in Buildings

Author:

Yuan Tianhao1ORCID,Liu Zeyu1,Zhang Linlin1,Dong Suiju2,Zhang Jilong3

Affiliation:

1. School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

2. Zhengzhou Heating Qiyuan Technology Co., Ltd., Zhengzhou 450062, China

3. Henan Provincial Academy of Building Research, Zhengzhou 450063, China

Abstract

An air-conditioning system (ACS), which consumes large amounts of high-grade energy, is essential for maintaining the indoor thermal environment of modern buildings. However, an ACS consumes almost half of the total energy of the building. Therefore, it is necessary to reduce the energy consumption of the ACS to promote energy conservation and emission reduction in the building sector. In fact, there is an abundance of waste heat and low-grade energies with the potential to be utilized in ACS in nature, but many of them are not utilized efficiently or cannot be utilized at all due to the low efficiency of thermal energy conversion. Known as a passive thermal transfer device, the application of a heat pipe (HP) in the ACS has shown explosive growth in recent years. HPs have been demonstrated to be an effective method for reducing building cooling and heating demands and energy consumption in ACS with experimental and simulation methods. This paper summarizes the different HP types applied in the ACS and provides brief insight into the performance enhancement of the ACS integrated with HP. Four types of HPs, namely tubular HP (THP), loop HP (LHP), pulsating HP (PHP) and flat HP (FHP), are presented. Their working principles and scope of applications are reviewed. Then, HPs used in natural cooling system, split air conditioner (SAC), centralized ACS (CACS) and cooling terminal devices are comprehensively reviewed. Finally, the heat transfer characteristics and energy savings of the above systems are critically analyzed. The results show that the performance of the HP is greatly affected by its own structure, working fluid and external environmental conditions. The energy saving of ACS coupled with HP is 3–40.9%. The payback period of this system ranges from 1.9–10 years. It demonstrates that the HP plays a significant role in reducing ACS energy consumption and improving indoor thermal comfort.

Funder

Program of Science and Technology Research of Henan Province in China

Plan Project of Housing and Urban Rural Construction Science and Technology of Henan Province in China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3