Enhancing Data Freshness in Air-Ground Collaborative Heterogeneous Networks through Contract Theory and Generative Diffusion-Based Mobile Edge Computing

Author:

Sun Zhiyao1,Chen Guifen1

Affiliation:

1. School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130000, China

Abstract

Mobile edge computing is critical for improving the user experience of latency-sensitive and freshness-based applications. This paper provides insights into the potential of non-orthogonal multiple access (NOMA) convergence with heterogeneous air–ground collaborative networks to improve system throughput and spectral efficiency. Coordinated resource allocation between UAVs and MEC servers, especially in the NOMA framework, is addressed as a key challenge. Under the unrealistic assumption that edge nodes contribute resources indiscriminately, we introduce a two-stage incentive mechanism. The model is based on contract theory and aims at optimizing the utility of the service provider (SP) under the constraints of individual rationality (IR) and incentive compatibility (IC) of the mobile user. The block coordinate descent method is used to refine the contract design and complemented by a generative diffusion model to improve the efficiency of searching for contracts. During the deployment process, the study emphasizes the positioning of UAVs to maximize SP effectiveness. An improved differential evolutionary algorithm is introduced to optimize the positioning of UAVs. Extensive evaluation shows our approach has excellent effectiveness and robustness in deterministic and unpredictable scenarios.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3