Column Experiments on Sorption Coefficients and Biodegradation Rates of Selected Pharmaceuticals in Three Aquifer Sediments

Author:

Kiecak AleksandraORCID,Breuer Friederike,Stumpp Christine

Abstract

The presence of pharmaceuticals in the environment, and in groundwater, has been recognized as a great environmental concern. Biodegradation and sorption are the main processes leading to the removal of contamination from the water phase. The aim of this study was to determine the transport processes of selected pharmaceuticals (antipyrine, atenolol, carbamazepine, caffeine, diclofenac, ketoprofen, sulfamethoxazole) in selected sediments (coarse sand, medium sand, sandy loam) in laboratory experiments. Moreover, the impact of flow velocities on the sorption and degradation rates of the selected compounds was studied. Column experiments were performed at three flow velocities, under abiotic and biotic conditions, applying conservative (bromide) and reactive tracers (pharmaceuticals). From the breakthrough curves, retardation factors and degradation rates were determined and the influence of variable flow conditions on transport parameters was evaluated. Low observed concentrations and recoveries of atenolol indicated a strong influence of sorption on its transport. Diclofenac, caffeine, and carbamazepine were also affected by sorption but to a lesser extent. Sulfamethoxazole, ketoprofen, and antipyrine were recovered nearly completely, indicating an almost conservative transport behavior. Biodegradation was small for all the compounds, as the results from biotic and abiotic column experiments were similar. Transport of the tested pharmaceuticals was not influenced by different flow velocities, as similar modelled degradation rates and retardation factors were found for all tested flow velocities.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3