Channel-to-Rib Width Ratio Optimization for the Electrical Performance Enhancement in PEMFC Based on Accurate Strain-Stress Simulation

Author:

Chen Xiangyang1,Luo Xianglong1,Wang Chao1,Liang Yingzong1,Chen Jianyong1,Yang Zhi1,He Jiacheng1,Chen Ying1

Affiliation:

1. Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Although a large channel-to-rib width ratio (CRWR) of the bipolar plate (BP) leads to a large electrical performance of PEMFC, an excessive CRWR leads to excessive pressure and destroys the gas diffusion layer (GDL), thus reducing the electrical performance of PEMFC. Revealing the relationship between the CRWR and GDL is of urgent necessity for improving the electrical performance of PEMFC. In this study, a three-dimensional model of PEMFC incorporating the compressed neo-Hookean theory is developed to accurately depict the stress-strain relationship. Compared with the traditional model incorporating the linear-elastic theory, the current density deviation of the proposed model is decreased from 9.81% to 2.55%. The correlation among CRWR of BP, stress, strain, and elastic modulus of GDL is fitted. The average stress deviation of the correlation from the simulated data is 3.41%. Based on the correlation, when the compressive strength of GDL is 2.5 MPa, the peak permissible CRWR is achieved at 2.91, indicating the peak value of CRWR without damaging the GDL structure. A power density enhancement of 29.04% compared to the conventional case is achieved. The strategies of this study can be used to guide the design of the channel of bipolar plates and enhance the power density of PEMFC.

Funder

Science and Technology Planning Project of Guangdong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3