Study on the near Wake Aerodynamic Characteristics of Floating Offshore Wind Turbine under Combined Surge and Pitch Motion

Author:

Leng Shudong1,Cai Yefeng23,Zhao Haisheng23ORCID,Li Xin23,Zhao Jiafei1

Affiliation:

1. Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116023, China

2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

3. School of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

Floating offshore wind turbines (FOWTs) may experience six degree of freedom (DoF) movements under the influence of environmental conditions. Different combinations of platform movements with the same amplitude and frequency may have distinct influences on the aerodynamic characteristics of the wind turbine. In this study, a detailed, full-scale CFD model of NREL 5 MW wind turbine is developed to investigate the specific aerodynamic and near wake characteristics under the influence of surge, pitch, and coupled surge–pitch platform motion based on the OpenFOAM tool box. It is clearly noted that different platform movements led to varying relative velocities of the blade, which affected the aerodynamic performance of wind turbines such as thrust, torque, and angle of attack (AOA). On the other hand, when the wind turbine was subjected to combined surge–pitch motion with the same phase, the wake velocity field fluctuated greatly, and the velocity at the center of the wake even exceeded the free flow velocity. Moreover, the platform movement affected the gap between the shed vortices. When the wind turbine moved forward, the gap between the vortices increased, while when the wind turbine moved backward, the gap between the vortices decreased or even converged, resulting in vortex–vortex interaction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3