Spatiotemporal Analysis of Water Quality Using Multivariate Statistical Techniques and the Water Quality Identification Index for the Qinhuai River Basin, East China

Author:

Ma Xiaoxue,Wang Lachun,Yang HongORCID,Li Na,Gong Chang

Abstract

Monitoring water quality is indispensable for the identification of threats to water environment and later management of water resources. Accurate monitoring and assessment of water quality have been long-term challenges. In this study, multivariate statistical techniques (MST) and water quality identification index (WQII) were applied to analyze spatiotemporal variation in water quality and determine the major pollution sources in the Qinhuai River, East China. A rotated principal component analysis (PCA) identified three potential pollution sources during the wet season (mixed pollution, physicochemical, and nonpoint sources of nutrients) and the dry season (nutrient, primary environmental, and organic sources) and they explained 81.14% of the total variances in the wet season and 78.42% of total variances in the dry season. The result of redundancy analysis (RDA) showed that population density, urbanization, and wastewater discharge are the main sources of organic pollution, while agricultural fertilizer consumption and industrial wastewater discharge are the main sources of nutrients such as nitrogen and phosphorus. The water quality of the Qinhuai River basin was determined to be mainly Class III (slightly polluted) and Class IV (moderately polluted) based on WQII. Temporally, the change trend of WQII showed that water quality gradually deteriorated between 1990 and 2005, improved between 2006 and 2010, and then deteriorated again. Spatially, the WQII distribution map showed that areas with more developed urbanization were relatively more polluted. Our results show that MST and WQII are useful tools to help the public and decision makers to evaluate the water quality of aquatic environment.

Funder

Major Science and Technology Program for Water Pollution Control and Treatment

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3