ICTH: Local-to-Global Spectral Reconstruction Network for Heterosource Hyperspectral Images

Author:

Zhou Haozhe1ORCID,Liu Zhanhao1,Huang Zhenpu1,Wang Xuguang1,Su Wen1,Zhang Yanchao1ORCID

Affiliation:

1. School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

Abstract

To address the high cost associated with acquiring hyperspectral data, spectral reconstruction (SR) has emerged as a prominent research area. However, contemporary SR techniques are more focused on image processing tasks in computer vision than on practical applications. Furthermore, the prevalent approach of employing single-dimensional features to guide reconstruction, aimed at reducing computational overhead, invariably compromises reconstruction accuracy, particularly in complex environments with intricate ground features and severe spectral mixing. Effectively utilizing both local and global information in spatial and spectral dimensions for spectral reconstruction remains a significant challenge. To tackle these challenges, this study proposes an integrated network of 3D CNN and U-shaped Transformer for heterogeneous spectral reconstruction, ICTH, which comprises a shallow feature extraction module (CSSM) and a deep feature extraction module (TDEM), implementing a coarse-to-fine spectral reconstruction scheme. To minimize information loss, we designed a novel spatial–spectral attention module (S2AM) as the foundation for constructing a U-transformer, enhancing the capture of long-range information across all dimensions. On three hyperspectral datasets, ICTH has exhibited remarkable strengths across quantitative, qualitative, and single-band detail assessments, while also revealing significant potential for subsequent applications, such as generalizability and vegetation index calculations) in two real-world datasets.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3