Relationship between Vegetation and Soil Moisture Anomalies Based on Remote Sensing Data: A Semiarid Rangeland Case

Author:

Martín-Sotoca Juan José12,Sanz Ernesto12ORCID,Saa-Requejo Antonio13ORCID,Moratiel Rubén14ORCID,Almeida-Ñauñay Andrés F.12,Tarquis Ana M.12ORCID

Affiliation:

1. Centro de Estudios e Investigación para la Gestión de Riesgos Agrarios y Medioambientales (CEIGRAM), Universidad Politécnica de Madrid, 28040 Madrid, Spain

2. Grupo de Sistemas Complejos, Universidad Politécnica de Madrid, 28040 Madrid, Spain

3. Evaluación de Recursos Naturales, Universidad Politécnica de Madrid, 28040 Madrid, Spain

4. Grupo AgSystems, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Abstract

The dynamic of rangelands results from complex interactions between vegetation, soil, climate, and human activity. This scenario makes rangeland’s condition challenging to monitor, and degradation assessment should be carefully considered when studying grazing pressures. In the present work, we study the interaction of vegetation and soil moisture in semiarid rangelands using vegetation and soil moisture indices. We aim to study the feasibility of using soil moisture negative anomalies as a warning index for vegetation or agricultural drought. Two semiarid agricultural regions were selected in Spain for this study: Los Vélez (Almería) and Bajo Aragón (Teruel). MODIS images, with 250 m and 500 m spatial resolution, from 2002 to 2019, were acquired to calculate the Vegetation Condition Index (VCI) and the Water Condition Index (WCI) based on the Normalised Difference Vegetation Index (NDVI) and soil moisture component (W), respectively. The Optical Trapezoid Model (OPTRAM) estimated this latter W index. From them, the anomaly (Z-score) for each index was calculated, being ZVCI and ZWCI, respectively. The probability of coincidence of their negative anomalies was calculated every 10 days (10-day periods). The results show that for specific months, the ZWCI had a strong probability of informing in advance, where the negative ZVCI will decrease. Soil moisture content and vegetation indices show more similar dynamics in the months with lower temperatures (from autumn to spring). In these months, given the low temperatures, precipitation leads to vegetation growth. In the following months, water availability depends on evapotranspiration and vegetation type as the temperature rises and the precipitation falls. The stronger relationship between vegetation and precipitation from autumn to the beginning of spring is reflected in the feasibility of ZWCI to aid the prediction of ZVCI. During these months, using ZWCI as a warning index is possible for both areas studied. Notably, November to the beginning of February showed an average increase of 20–30% in the predictability of vegetation anomalies, knowing moisture soil anomalies four lags in advance. We found other periods of relevant increment in the predictability, such as March and April for Los Vélez, and from July to September for Bajo Aragón.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3