Presenting a Long-Term, Reprocessed Dataset of Global Sea Surface Temperature Produced Using the OSTIA System

Author:

Worsfold Mark1ORCID,Good Simon1ORCID,Atkinson Chris1ORCID,Embury Owen2ORCID

Affiliation:

1. Met Office, Exeter EX1 3PB, UK

2. Department of Meteorology, University of Reading, Reading RG6 6UR, UK

Abstract

Over the past few decades, the oceans have stored the majority of the excess heat in the climate system resulting from anthropogenic emissions. An accurate, long-term sea surface temperature (SST) dataset is essential for monitoring and researching the changes to the global oceans. A variety of SST datasets have been produced by various institutes over the years, and here, we present a new SST data record produced originally within the Copernicus Marine Environment Monitoring Service (which is therefore named CMEMS v2.0) and assess: (1) its accuracy compared to independent observations; (2) how it compares with the previous version (named CMEMS v1.2); and (3) its performance during two major volcanic eruptions. By comparing both versions of the CMEMS datasets using independent in situ observations, we show that both datasets are within the target accuracy of 0.1 K, but that CMEMS v2.0 is closer to the ground truth. The uncertainty fields generated by the two analyses were also compared, and CMEMS v2.0 was found to provide a more accurate estimate of its own uncertainties. Frequency and vector analysis of the SST fields determined that CMEMS v2.0 feature resolution and horizontal gradients were also superior, indicating that it resolved oceanic features with greater clarity. The behavior of the two analyses during two volcanic eruption events (Mt. Pinatubo and El Chichón) was examined. A comparison with the HadSST4 gridded in situ dataset suggested a cool bias in the CMEMS v2.0 dataset versus the v1.2 dataset following the Pinatubo eruption, although a comparison with sparser buoy-only observations yielded less clear results. No clear impact of the El Chichón eruption (which was a smaller event than Mt. Pinatubo) on CMEMS v2.0 was found. Overall, with the exception of a few specific and extreme events early in the time series, CMEMS v2.0 possesses high accuracy, resolution, and stability and is recommended to users.

Funder

UK government/DSIT Earth Observation Investment Package

Copernicus Marine Environment Monitoring Service

Publisher

MDPI AG

Reference80 articles.

1. GCOS-200 (2024, August 28). The Global Observing System for Climate: Implementation Needs. Available online: https://library.wmo.int/idurl/4/55469.

2. GHRSST Science Team (2010). The Recommended GHRSST Data Specification (GDS), GHRSST.

3. Sea surface temperature intercomparison in the framework of the Copernicus climate change service (C3S);Yang;Am. Meterological Soc.,2021

4. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system;Donlon;Remote Sens. Environ.,2012

5. Toward improved validation of satellite sea surface skin temperature measurements for climate research;Donlon;J. Clim.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3