Mapping Building Heights at Large Scales Using Sentinel-1 Radar Imagery and Nighttime Light Data

Author:

Kakooei Mohammad1ORCID,Baleghi Yasser2ORCID

Affiliation:

1. Department of Computer Science, Chalmers University of Technology, 41258 Gothenburg, Sweden

2. Department of Electronic Engineering, Babol Noshirvani University of Technology, Babol 4714871167, Iran

Abstract

Human settlement areas significantly impact the environment, leading to changes in both natural and built environments. Comprehensive information on human settlements, particularly in urban areas, is crucial for effective sustainable development planning. However, urban land use investigations are often limited to two-dimensional building footprint maps, neglecting the three-dimensional aspect of building structures. This paper addresses this issue to contribute to Sustainable Development Goal 11, which focuses on making human settlements inclusive, safe, and sustainable. In this study, Sentinel-1 data are used as the primary source to estimate building heights. One challenge addressed is the issue of multiple backscattering in Sentinel-1’s signal, particularly in densely populated areas with high-rise buildings. To mitigate this, firstly, Sentinel-1 data from different directions, orbit paths, and polarizations are utilized. Combining ascending and descending orbits significantly improves estimation accuracy, and incorporating a higher number of paths provides additional information. However, Sentinel-1 data alone are not sufficiently rich at a global scale across different orbits and polarizations. Secondly, to enhance the accuracy further, Sentinel-1 data are corrected using nighttime light data as additional information, which shows promising results in addressing multiple backscattering issues. Finally, a deep learning model is trained to generate building height maps using these features, achieving a mean absolute error of around 2 m and a mean square error of approximately 13. The generalizability of this method is demonstrated in several cities with diverse built-up structures, including London, Berlin, and others. Finally, a building height map of Iran is generated and evaluated against surveyed buildings, showcasing its large-scale mapping capability.

Funder

Iran National Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3