Seepage and Stability Analysis of Earth Dams’ Downstream Slopes, Considering Hysteresis in Soil–Water Characteristic Curves under Reservoir Water Level Fluctuations

Author:

Liu Guodong1ORCID,Zhou Zhijun2,Zhang Jiarong1,Jiang Guan1,Mi Wenjing1

Affiliation:

1. College of Urban, Rural Planning and Architectural Engineering, Shangluo University, Shangluo 726000, China

2. School of Highway, Chang’an University, Xi’an 710046, China

Abstract

Fluctuations in reservoir water levels have a significant impact on the seepage and slope stability of earth dams. The varying rate of the water level and soil–water characteristic curve (SWCC) hysteresis are the main factors affecting the seepage and the stability of dam slopes; however, they are not adequately considered in engineering practices. In this study, the SEEP/W module and the SLOPE/W module of Geo-studio were employed to analyze the seepage features and the stability of downstream slopes, taking into account the water level fluctuation rate and the SWCC hysteresis. The results reveal that the pore water pressure of the representative point forms a hysteresis loop when the water level fluctuates, which becomes smaller as the water level variation rate increases. Within the loop, the pore water pressure with a rising water level is greater than the value when the water level is dropping, and the desorption SWCC derives greater pore water pressures than the adsorption SWCC. Similarly, the safety factor (Fs) curves under the condition of water level fluctuations also form a hysteresis loop, which becomes smaller as the variation rate of the water level increases. When the water level fluctuation rate increases to 4 m/d, the two curves are tangent, meaning that the Fs with a rising water level is always greater than the value when the water level is dropping. The desorption SWCC derives a lower Fs value than the adsorption SWCC as the water level draws up, but this initiates no evident difference in the Fs value when the water level draws down. These findings can be used to inform the design and operation of earth dams under fluctuating water levels.

Funder

Shangluo University

Science and Technology Bureau of Shangluo City

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3