δ-MnO2 Drives the Green Decomposition of Arsenopyrite by Mediating the Fate of Arsenic to Generate FeAsO4

Author:

Pan Xuan1,Liu Li-Zhu1,Nie Zhen-Yuan12,Xia Jin-Lan12

Affiliation:

1. School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China

2. Key Lab of Biometallurgy of the Ministry of Education of China, Central South University, Changsha 410083, China

Abstract

Arsenopyrite (FeAsS) is a typical gold-bearing sulfide mineral. It usually encapsulates the gold particles and seriously inhibits the leaching of gold, so oxidation pretreatment of arsenopyrite is prerequired for the effective leaching of gold. However, the oxidation of arsenopyrite is accompanied by arsenic mobility, potentially resulting in serious environmental issues. An eco-friendly oxidant, δ-MnO2, was herein used to effectively oxidize arsenopyrite and control the fate of arsenic under acidic conditions. Via characterization of the variation of leaching parameters, morphology change, and elemental speciation transformation on the mineral surface, it was found that adding δ-MnO2 significantly provoked the oxidation of Fe(II) and As(−I) to Fe(III) and As(V), and mediated the speciation transformation of Fe/As to FeAsO4. δ-MnO2 dosage remarkably controlled the oxidation efficiency of arsenopyrite and arsenic speciation transformation, efficiently regulating arsenic fate. These results suggest that δ-MnO2 could simultaneously promote the dissolution of arsenopyrite and the immobilization of arsenic, which could have implications for the oxidation pretreatment of refractory gold minerals and the source management of arsenic-contaminated environments.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of China and Liaoning Provincial People’s Government

Open Funds of Beijing Synchrotron Radiation Facility

Open Funds of Shanghai Synchrotron Radiation Facility

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference50 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3