An Integrated Deep Learning Framework for Classification of Mineral Thin Sections and Other Geo-Data, a Tutorial

Author:

Dell’Aversana Paolo1

Affiliation:

1. Eni S.p.A., San Donato Milanese, 20097 Milan, Italy

Abstract

Recent studies have demonstrated the potential of machine learning methods for fast and accurate mineral classification based on microscope thin sections. Such methods can be extremely useful to support geoscientists during the phases of operational geology, especially when mineralogical and petrological data are fully integrated with other geological and geophysical information. In order to be effective, these methods require robust machine learning models trained on pre-labeled data. Furthermore, it is mandatory to optimize the hyper-parameters of the machine learning techniques in order to guarantee optimal classification accuracy and reliability. Nowadays, deep learning algorithms are widely applied for image analysis and automatic classification in a large range of Earth disciplines, including mineralogy, petrography, paleontology, well-log analysis, geophysical imaging, and so forth. The main reason for the recognized effectiveness of deep learning algorithms for image analysis is that they are able to quickly learn complex representations of images and patterns within them. Differently from traditional image-processing techniques based on handcrafted features, deep learning models automatically learn and extract features from the data, capturing, in almost real-time, complex relationships and patterns that are difficult to manually define. Many different types of deep learning models can be used for image analysis and classification, including fully connected deep neural networks (FCNNs), convolutional neural networks (CNNs or ConvNet), and residual networks (ResNets). In this paper, we compare some of these techniques and verify their effectiveness on the same dataset of mineralogical thin sections. We show that the different deep learning methods are all effective techniques in recognizing and classifying mineral images directly in the field, with ResNets outperforming the other techniques in terms of accuracy and precision. In addition, we compare the performance of deep learning techniques with different machine learning algorithms, including random forest, naive Bayes, adaptive boosting, support vector machine, and decision tree. Using quantitative performance indexes as well as confusion matrixes, we demonstrate that deep neural networks show generally better classification performances than the other approaches. Furthermore, we briefly discuss how to expand the same workflow to other types of images and geo-data, showing how this deep learning approach can be generalized to a multiscale/multipurpose methodology addressed to the analysis and automatic classification of multidisciplinary information. This article has tutorial purposes, too. For that reason, we will explain, with a didactical level of detail, all the key steps of the workflow.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference20 articles.

1. Aminzadeh, F., and de Groot, P. (2006). Neural Networks and Other Soft Computing Techniques with Applications in the Oil Industry, EAGE Publications.

2. Barnes, A.E., and Laughlin, K.J. (2002). Expanded Abstracts, SEG Technical Program.

3. Bestagini, P., Lipari, V., and Tubaro, S. (2017). Expanded Abstracts, SEG Technical Program.

4. Comparison of different Machine Learning algorithms for lithofacies classification from well logs;Bull. Geophys. Oceanogr.,2017

5. Deep Learning for automatic classification of mineralogical thin sections;Bull. Geophys. Oceanogr.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3