Fluid Evolution and Ore Genesis of the Songjianghe Au Deposit in Eastern Jilin Province, NE China: Constraints from Fluid Inclusions and H-O-S-Pb Isotope Systematics

Author:

Yu Qi12,Wang Keyong1,Zhang Xuebing3ORCID,Sun Qingfei1,Bai Wenqiang4,Ma Chao2,Xiao Yongchun2

Affiliation:

1. College of Earth Sciences, Jilin University, Changchun 130061, China

2. Geological Survey Institute of Jilin Province, Changchun 130102, China

3. College of Geology and Mining Engineering, Xinjiang University, Urumqi 830047, China

4. Team 603 of Jilin Nonferrous Metal Geological Exploration Bureau, Yanji 133300, China

Abstract

The medium-sized Songjianghe Au deposit is located in the southeastern part of the Jiapigou-Haigou gold belt (JHGB) in central eastern Jilin Province, NE China. The gold mineralization is primarily characterized by disseminated-style ores and hosted in the low-/medium-grade metamorphic rocks of the Seluohe Group. The ore bodies are governed by NNW-striking brittle-ductile structures and spatially correlated with silicic and sericitic alterations. Four alteration/mineralization stages have been distinguished: (I) Quartz-pyrrhotite-pyrite, (II) quartz-polymetallic sulfides, (III) quartz-pyrite, and (IV) quartz-calcite. The fluid inclusion (FI) assemblage in quartz from Stage I comprises C1-type, C2-type, C3-type, and VL-type FIs, with total homogenization temperatures (Th-total) of 292.8 to 405.6 °C and salinities of 2.8 to 9.3 wt% NaCl eqv. Quartz from Stage II (main ore stage) developed C2-, C3-, and VL-type FIs, with a Th-total of 278.5 to 338.9 °C and salinities of 2.8 to 8.1 wt% NaCl eqv. Stage III is characterized by coexisting C3- and VL-type FIs in quartz, with a Th-total of 215.9 to 307.3 °C and salinities of 2.4 to 7.2 wt% NaCl eqv. Only VL-type FIs are observed in Stage IV, with a Th-total of 189.5 to 240.4 °C and salinities of 3.7 to 5.7 wt% NaCl eqv. The Laser Raman spectroscopic results demonstrated minor CH4 in the C-type FIs from Stages I and II. The results suggest that ore fluids may have evolved from a medium-high temperature, low-salinity immiscible CO2-NaCl-H2O ± CH4 system to a low temperature, low-salinity homogeneous NaCl-H2O system. Fluid immiscibility caused by the rapid drop in pressure may have been the main trigger for gold-polymetallic sulfide precipitation. The Songjianghe Au deposit may have been formed under 352–448 °C and 850–1380 bar pressure, based on the isochore intersection for Stage II fluid inclusions. The H-O isotopic compositions (Stage I: δ18Ofluid = 5.6 to 5.8‰, δD = −96.2 to −95.7‰; Stage II: δ18Ofluid = 3.7 to 4.2‰, δD = −98.7 to −89.8‰; Stage III: δ18Ofluid = 1.2 to 1.4‰, δD = −103.5 to −101.2‰) indicate that the hydrothermal fluids are dominated by magmatic water in the early stages (Stages I and II) and mixed with meteoric water since Stage III. The pyrite S-Pb isotope data (δ34S: −2.91 to 3.40‰; 206Pb/204Pb: 16.3270 to 16.4874; 207Pb/204Pb: 15.2258 to 15.3489; 208Pb/204Pb: 36.6088 to 36.7174), combined with Pb isotopic compositions of the intrusive rocks and wall rocks (the Seluohe Group) in the ore district, indicate that the ore-forming materials at Songjianghe are predominantly from a magmatic source and may have been affected by the contamination of the Seluohe Group. In accordance with the features of ore geology, ore-forming fluids and metals, and geodynamic setting, the Songjianghe Au deposit belongs to a mesothermal magmatic hydrothermal vein gold deposit, which formed in the intermittent stage of Paleo-Pacific plate subduction during the Late Jurassic.

Funder

the Opening Foundation of Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Land and Resources of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference126 articles.

1. Li, L. (2016). Research on Ore-Forming Fluids of Gold Deposits in Jiapigou-Haigou Gold Belt, Jilin Province and Deep-Seated Metallogenic Assessment. [Ph.D. Thesis, Jilin University]. (In Chinese).

2. Zhang, X.T. (2018). Research on Geology, Geochemistry and Metallogenesis of the Gold Deposits of the Jiapigou Ore Field in the Continental Margin of Northeast China. [Ph.D. Thesis, Jilin University]. (In Chinese).

3. Adoption of a mineral system model in successful deep exploration at Erdaogou, China’s deepest gold mine, on the northeastern margin of the North China Craton;Liu;Ore Geol. Rev.,2021

4. Main minerogenetic epoch, determine and exploratory direction of Jiapigou gold deposit, Jilin;Sun;Acta Geosci. Sin.,1997

5. The characteristics and its geological significance of fluid inclusions in Haigou Lode gold deposit, Jilin Province;Zhang;Acta Petrol. Sin.,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3