Development of Mid-Infrared Absorption Spectroscopy for Gemstone Analysis

Author:

Wang Zhen1,Takahashi Hiroshi1

Affiliation:

1. Gemological Institute of America, 50 W 47th Street, New York, NY 10036, USA

Abstract

Absorption spectroscopy has been widely used in gemstone societies as it enables the identification of the origin and post-treatment of gemstones in a non-destructive way. The infrared (IR) range is critical for studies of gemstones such as corundum, emerald, and diamond. Regarding the corundum sample, absorption peaks related to the -OH bond could be used as an index for heat-treatment detection, and different types of inclusions could be identified by analyzing the IR absorption spectrum. The most widely used method for measuring IR absorptions is Fourier-transform infrared spectroscopy (FTIR), which was designed based on the working of the Michelson interferometer. However, FTIR has a few limitations, such as a long measurement time and difficulty in sample placement, which limits its full automation capability. In this study, a mid-infrared (MIR) spectrometer relying on the upconversion phenomenon of non-linear crystals was used to measure the absorption spectra. Corundum with heat treatment features and/or with different common types of inclusions were measured by both transmission and reflection modes. After comparison with the FTIR spectra captured on the same sample set, the same target peaks could be captured with a shorter measurement time and easier operation. The developed MIR spectrometer could directly measure the absorption spectrum in the 2–4.5 µm (2200–5000 cm−1) range within a few seconds. Meanwhile, as both transmission and reflection modes were available, both loose and mounted gemstones could be measured, supporting the widespread use of this device in large-scale production and its ability to achieve full automation.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference28 articles.

1. Ruby & sapphire—A gemologist’s guide;Kiefert;J. Gemmol.,2017

2. Beryllium diffusion of ruby and sapphire;Emmett;Gems Gemol.,2003

3. Heat treating the sapphires of rock creek, Montana;Emmett;Gems Gemol.,1993

4. Themelis, T. (2018). The Heat Treatment of Ruby & Sapphire, GemLab Inc.. [3rd ed.].

5. Water in minerals? A peak in the infrared;Aines;J. Geophys. Res.,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3